Multiclass Stomach Diseases Classification Using Deep Learning Features Optimization

نویسندگان

چکیده

In the area of medical image processing, stomach cancer is one most important cancers which need to be diagnose at early stage. this paper, an optimized deep learning method presented for multiple disease classification. The proposed work in few steps—preprocessing using fusion filtering images along with Ant Colony Optimization (ACO), transfer learning-based features extraction, optimization extracted nature-inspired algorithms, and finally optimal vectors classification Multi-Layered Perceptron Neural Network (MLNN). feature extraction step, pre-trained Inception V3 utilized retrained on selected infection classes step. Later on, activation function applied Global Average Pool (GAP) extraction. However, are through two different algorithms—Particle Swarm (PSO) dynamic fitness Crow Search Algorithm (CSA). Hence, both methods’ output fused by a maximal value approach classified vector MLNN. Two datasets used evaluate method—CUI WahStomach Diseases Combined dataset achieved average accuracy 99.5%. comparison existing techniques, it shown that shows significant performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification with Costly Features using Deep Reinforcement Learning

We study a classification problem where each feature can be acquired for a cost and the goal is to optimize the trade-off between classification precision and the total feature cost. We frame the problem as a sequential decision-making problem, where we classify one sample in each episode. At each step, an agent can use values of acquired features to decide whether to purchase another one or wh...

متن کامل

Learning Deep Features for One-Class Classification

We propose a deep learning-based solution for the problem of feature learning in one-class classification. The proposed method operates on top of a Convolutional Neural Network (CNN) of choice and produces descriptive features while maintaining a low intra-class variance in the feature space for the given class. For this purpose two loss functions, compactness loss and descriptiveness loss are ...

متن کامل

Imbalanced Multiclass Data Classification Using Ant Colony Optimization Algorithm

Class imbalance problems have drawn increasing interest lately because of its classification trouble caused by imbalanced class deliveries and poor prediction performance for minority class. This problem is particularly common in preparation and can be detected in various disciplines including fraud detection, anomaly detection, oil spillage detection, medical diagnosis, facial recognition. Man...

متن کامل

Classification of Lung Diseases using Optimization Techniques

The lungs are part of complex apparatus, expanding and relaxing thousands of times each day to bring in oxygen and expel carbon dioxide. Lung disease can results from problems in any part of this system. In this paper, an automated approach for feature selection and classification of the lung diseases using CT images is presented. The lung CT image is engaged as the input. Filters are used to r...

متن کامل

A Deep Learning-based Approach for Banana Leaf Diseases Classification

Plant diseases are important factors as they result in serious reduction in quality and quantity of agriculture products. Therefore, early detection and diagnosis of these diseases are important. To this end, we propose a deep learning-based approach that automates the process of classifying banana leaves diseases. In particular, we make use of the LeNet architecture as a convolutional neural n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2021

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2021.014983